Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.222
Filtrar
1.
Carbohydr Polym ; 335: 122073, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616095

RESUMO

Breast cancer remains one of the most intractable diseases, especially the malignant form of metastasis, with which the cancer cells are hard to track and eliminate. Herein, the common known carbohydrate polymer chitosan (CS) was innovatively used as a shelter for the potent tumor-killing agent. The designed nanoparticles (NPs) not only enhance the solubility of hydrophobic paclitaxel (PTX), but also provide a "hide" effect for cytotoxic PTX in physiological condition. Moreover, coupled with the photothermal (PTT) properties of MoS2, results in a potent chemo/PTT platform. The MoS2@PTX-CS-K237 NPs have a uniform size (135 ± 17 nm), potent photothermal properties (η = 31.5 %), and environment-responsive (low pH, hypoxia) and near infrared (NIR) laser irradiation-triggered PTX release. Through a series of in vitro and in vivo experiments, the MoS2@PTX-CS-K237 showed high affinity and specificity for breast cancer cells, impressive tumor killing capacity, as well as the effective inhibitory effect of metastasis. Benefit from the unique optical properties of MoS2, this multifunctional nanomedicine also exhibited favorable thermal/PA/CT multimodality imaging effect on tumor-bearing mice. The system developed in this work represents the advanced design concept of hierarchical stimulus responsive drug release, and merits further investigation as a potential nanotheranostic platform for clinical translation.


Assuntos
Quitosana , Neoplasias , Animais , Camundongos , Molibdênio , Nanomedicina , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Imagem Multimodal
2.
Immunopharmacol Immunotoxicol ; : 1-10, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622049

RESUMO

Context: Hemangioma (HA) is a benign vascular neoplasm that can lead to permanent scarring. C-C motif chemokine ligand 2 (CCL2) plays a crucial role in facilitating growth and angiogenesis during HA progression. However, the mechanism regulating CCL2 in HA remains poorly elucidated.Objective: To elucidate the mechanism regulating CCL2 in HA.Methods: Quantitative real-time polymerase chain reaction (RT-qPCR) was employed to determine the expression levels of CCL2, long noncoding RNA (lncRNA) CTBP1 divergent transcript (CTBP1-AS2), and microRNAs (miRNAs). Proliferation, migration, invasion, and angiogenic abilities of human HA endothelial cells (HemECs) were assessed using cell counting kit-8 (CCK-8), colony formation, flow cytometry, transwell, and tube formation assays. Bioinformatics analysis, RNA pull-down, and luciferase reporter assays were conducted to investigate whether CCL2 targets miR-335-5p. Additionally, rescue experiments were performed in this study.Results: CCL2 expression was markedly upregulated in HemECs. CCL2 promoted HA cell proliferation, migration, invasion, and angiogenesis while inhibiting apoptosis. CCL2 was directly targeted by miR-335-5p. Additionally, we found that CTBP1-AS2 could function as a competing endogenous RNA (ceRNA) to sponge miR-335-5p, thereby upregulating CCL2.Conclusion: Our findings suggest that targeting the CTBP1-AS2/miR-335-5p/CCL2 axis may hold promise as a therapeutic strategy for HA.

3.
J Org Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624206

RESUMO

The trivalent phosphine-catalyzed [4+1] spiro-annulation reaction of allenyl imide and activated methylene cyclocompounds has been developed for the construction of various spiro-2-cyclopenten-1-ones. Oxindoles, 3-isochromanones, and 2-indanones are selected as 1C synthons to capture the in situ-generated bis-electrophilic α,ß-unsaturated ketenyl phosphonium intermediate, affording the corresponding monospiro- and bispiro-cyclopentenones in good to excellent yields (≤91%) under mild conditions. The primary attempt at asymmetric catalysis using monophosphine (R)-SITCP provides promising enantioselectivity (45% ee). A plausible reaction mechanism is also proposed.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38625507

RESUMO

Polymyxin B (PMB) is considered a last-line treatment for multidrug-resistant (MDR) gram-negative bacterial infections. Model-informed precision dosing with population pharmacokinetics (PopPK) models could help to individualize PMB dosing regimens and improve therapy. However, the external prediction ability of the established PopPK models has not been fully elaborated. This study aimed to systemically evaluate eleven PMB PopPK models from ten published literature based on a new independent population, which was divided into four different populations, patients with liver dysfunction, kidney dysfunction, liver and kidney dysfunction, and normal liver and kidney function. The whole data set consisted of 146 patients with 391 PMB concentrations. The prediction- and simulation-based diagnostics and Bayesian forecasting were conducted to evaluate model predictability. In the overall evaluation process, none of the models exhibited satisfactory predictive ability in both prediction- and simulation-based diagnostic simultaneously. However, the evaluation of the models in the subgroup of patients with normal liver and kidney function revealed improved predictive performance compared to those with liver and/or kidney dysfunction. Bayesian forecasting demonstrated enhanced predictability with the incorporation of two to three prior observations. The external evaluation highlighted a lack of consistency between the prediction results of published models and the external validation dataset. Nonetheless, Bayesian forecasting holds promise in improving the predictive performance of the models, and feedback from therapeutic drug monitoring is crucial in optimizing individual dosing regimens.

5.
Heliyon ; 10(8): e29326, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628712

RESUMO

Objectives: The impact of N7-methylguanosine (m7G) on tumor progression and the regulatory role of microRNAs (miRNAs) in immune function significantly influence breast cancer (BC) prognosis. Investigating the interplay between m7G modification and miRNAs provides novel insights for assessing prognostics and drug responses in BC. Materials and methods: RNA sequences (miRNA and mRNA profiles) and clinical data for BC were acquired from the Cancer Genome Atlas (TCGA) database. A miRNA signature associated with 15 m7G in this cohort was identified using Cox regression and LASSO. The risk score model was evaluated using Kaplan-Meier and time-dependent ROC analysis, categorizing patients into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore potential pathways. The immune system, including scores, cell infiltration, function, and drug sensitivity, was examined and compared between high-risk and low-risk groups. A nomogram that combines risk scores and clinical factors was developed and validated. Single-sample gene set enrichment analysis (ssGSEA) was employed to explore m7G-related miRNA signatures and immune cell relationships in the tumor microenvironment. Additionally, drug susceptibility was compared between risk groups. Results: Fifteen m7G-related miRNAs were independently correlated with overall survival (OS) in BC patients. Time-dependent ROC analysis yielded area under the curve (AUC) values of 0.742, 0.726, and 0.712 for predicting 3-, 5-, and 10-year survival rates, respectively. The Kaplan-Meier analysis revealed a significant disparity in OS between the high-risk and low-risk groups (p = 1.3e-6). Multiple regression identified the risk score as a significant independent prognostic factor. An excellent calibration nomogram with a C-index of 0.785 (95 % CI: 0.728-0.843) was constructed. In immune analysis, low-risk patients exhibited heightened immune function and increased responsiveness to immunotherapy and chemotherapy compared to high-risk patients. Conclusion: This study systematically analyzed m7G-related miRNAs and revealed their regulatory mechanisms concerning the tumor microenvironment (TME), pathology, and the prognosis of BC patient. Based on these miRNAs, a prognostic model and nomogram were developed for BC patients, facilitating prognostic assessments. These findings can also assist in predicting treatment responses and guiding medication selection.

6.
J Magn Reson ; 362: 107675, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38631172

RESUMO

Two-dimensional (2D) J-resolved spectroscopy provides valuable information on J-coupling constants for molecular structure analysis by resolving one-dimensional (1D) spectra. However, it is challenging to decipher the J-coupling connectivity in 2D J-resolved spectra because the J-coupling connectivity cannot be directly provided. In addition, 2D homonuclear correlation spectroscopy (COSY) can directly elucidate molecular structures by tracking the J-coupling connectivity between protons. However, this method is limited by the problem of spectral peak crowding and is only suitable for simple sample systems. To fully understand the intuitive coupling relationship and coupling constant information, we propose a three-dimensional (3D) COSY method called CTCOSY-JRES (Constant-Time COrrelation SpectroscopY and J-REsolved Spectroscopy) in this paper. By combining the J-resolved spectrum with the constant-time COSY technique, a doubly decoupled COSY spectrum can be provided while preserving the J-coupling constant along an additional dimension, ensuring high-resolution analysis of J-coupling connectivity and J-coupling information. Moreover, compression sensing and fold-over correction techniques are introduced to accelerate experimental acquisition. The CTCOSY-JRES method has been successfully validated in a variety of sample systems, including industrial, agricultural, and biopharmaceutical samples, revealing complex coupling interactions and providing deeper insights into the resolution of molecular structures.

7.
Anal Chim Acta ; 1303: 342510, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609260

RESUMO

BACKGROUND: Symmetrical NMR spectroscopy, such as Total Correlation Spectroscopy (TOCSY) and other homonuclear spectroscopy, displays symmetry in chemical shift but are generally not symmetrical in terms of intensity, which constitutes a pivotal branch of multidimensional NMR spectroscopy and offers a robust tool for elucidating the structures and dynamics of complex samples, particularly in the context of biological macromolecules. Non-Uniform Sampling (NUS) stands as a critical technique for accelerating multidimensional NMR experiments. However, symmetrical NMR spectroscopy inherently presents dynamic peak intensities, where cross peaks tend to be substantially weaker compared to diagonal peaks. Recovering these weaker cross peaks from NUS data poses a significant challenge, often resulting in compromised data quality. RESULTS: We enhance the reconstruction quality of NUS symmetrical NMR spectroscopy based on the assumption that the asymmetry in intensity is mild. Regarding the sampling schedule, we employ the symmetrical sampling structure integrated with Poisson sampling schedule to enhance the efficiency of data acquisition. In term of the reconstruction algorithm, we propose the new method by incorporating hard and soft symmetrical constraints into our recently developed L1-norm-based Compressed Sensing (CS) method known as Sparse Complex-valued REconstruction Enabled by Newton method (SCREEN). Additionally, we propose a two-step reconstruction strategy that separately addresses diagonal and cross peaks. In this two-step strategy, cross peaks are effectively reconstructed by excluding the stronger diagonal peaks. Extensive experimental results validate the effectiveness of our proposed methodology. SIGNIFICANCE: This method enhances the overall quality of the reconstructed NUS symmetrical NMR spectra, especially in terms of cross peaks, thereby enriching the interpretation of spectral information. Furthermore, it boosts the robustness towards regularization parameters, facilitating a user-friendly experience.

8.
Sci Rep ; 14(1): 8506, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605164

RESUMO

Despite that surgical resection is widely regarded as the most effective approach to the treatment of liver cancer, its safety and efficacy upon centrally located hepatocellular carcinoma (HCC) remain unsatisfactory. In consequence, seeking an integrated treatment, like combined with adjuvant radiotherapy, to enhance the prognosis of patients is of critical importance. By recruiting patients undergoing surgical resection for centrally located HCC ranging from June 2015 to 2020, they were divided into liver resection combined with adjuvant radiotherapy (LR + RT) and mere liver resection (LR) groups. The calculation of propensity score and model of Cox proportional hazards regression were utilized. 193 patients were recruited in aggregation, containing 88 ones undergoing LR + RT, while 105 handled with LR. RT was verified to be an independent factor of prognosis for relapse (HR 0.60). In propensity-score analyses, significant association existed between adjuvant radiotherapy and better disease-free survival (DFS) (Matched, HR 0.60; Adjustment of propensity score, HR 0.60; Inverse probability weighting, HR 0.63). The difference of DFS was apparent within two groups (p value = 0.022), and RT significantly down-regulated early relapse (p value < 0.05) in subgroup analysis. The calculation of E-value revealed robustness of unmeasured confounding. The combination of liver surgical resection with RT is safe and effective towards patients with centrally located HCC, which would notably enhance the prognosis and decrease the early relapse of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia , Radioterapia Adjuvante , Estudos Retrospectivos , Prognóstico , Hepatectomia , Pontuação de Propensão , Recidiva , Resultado do Tratamento
9.
Foods ; 13(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611383

RESUMO

This study investigated the impact of incorporating various inactivated probiotic formulations, with or without recombinant lactoferrin (LF) expression, into a standard chow diet on metabolic-related disorders in obese mice. After inducing obesity through a 13-week high-fat diet followed by a standard chow diet, mice received daily oral administrations of different probiotics for 6 weeks using the oral gavage approach. These probiotic formulations consisted of a placebo (MRS), heat-inactivated Lactobacillus gasseri HM1 (HK-HM1), heat-killed LF-expression HM1 (HK-HM1/LF), sonication-killed HM1 (SK-HM1), and sonication-killed LF-expression HM1 (SK-HM1/LF). The study successfully induced obesity, resulting in worsened glucose tolerance and insulin sensitivity. Interestingly, the regular diet alone improved glucose tolerance, and the addition of inactivated probiotics further enhanced this effect, with SK-HM1/LF demonstrating the most noticeable improvement. However, while regular dietary intervention alone improved insulin sensitivity, probiotic supplementation did not provide additional benefits in this aspect. Inflammation in perirenal and epididymal fat tissues was partially alleviated by the regular diet and further improved by probiotics, particularly by SK-HM1, which showed the most significant reduction. Additionally, HK-HM1 and HK-HM1/LF supplements could contribute to the improvement of serum total triglycerides or total cholesterol, respectively. Overall, incorporating inactivated probiotics into a regular diet may enhance metabolic indices, and recombinant LF may offer potential benefits for improving glucose tolerance.

10.
J Nucl Med ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604764

RESUMO

68Ga-labeled nanobody (68Ga-NC-BCH) is a single-domain antibody-based PET imaging agent. We conducted a first-in-humans study of 68Ga-NC-BCH for PET to determine its in vivo biodistribution, metabolism, radiation dosimetry, safety, and potential for quantifying claudin-18 isoform 2 (CLDN18.2) expression in gastrointestinal cancer patients. Methods: Initially, we synthesized the probe 68Ga-NC-BCH and performed preclinical evaluations on human gastric adenocarcinoma cell lines and xenograft mouse models. Next, we performed a translational study with a pilot cohort of patients with advanced gastrointestinal cancer on a total-body PET/CT scanner. Radiopharmaceutical biodistribution, radiation dosimetry, and the relationship between tumor uptake and CLDN18.2 expression were evaluated. Results: 68Ga-NC-BCH was stably prepared and demonstrated good radiochemical properties. According to preclinical evaluation,68Ga-NC-BCH exhibited rapid blood clearance, high affinity for CLDN18.2, and high specific uptake in CLDN18.2-positive cells and xenograft mouse models. 68Ga-NC-BCH displayed high uptake in the stomach and kidney and slight uptake in the pancreas. Compared with 18F-FDG, 68Ga-NC-BCH showed significant differences in uptake in lesions with different levels of CLDN18.2 expression. Conclusion: A clear correlation was detected between PET SUV and CLDN18.2 expression, suggesting that 68Ga-NC-BCH PET could be used as a companion diagnostic tool for optimizing treatments that target CLDN18.2 in tumors.

11.
Nat Mater ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589543

RESUMO

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

12.
Mol Neurobiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592585

RESUMO

Subarachnoid hemorrhage (SAH) triggers severe neuroinflammation and cognitive impairment, where microglial M1 polarization exacerbates the injury and M2 polarization mitigates damage. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), carrying microRNA (miR)-140-5p, offer therapeutic promise by targeting the cAMP/PKA/CREB pathway and modulating microglial responses, demonstrating a novel approach for addressing SAH-induced brain injury. This research explored the role of miR-140-5p delivered by MSC-EVs in mitigating brain damage following SAH. Serum from SAH patients and healthy individuals was analyzed for miR-140-5p and cAMP levels. The association between miR-140-5p levels, brain injury severity, and patient survival was examined, along with the target relationship between miR-140-5p and histone deacetylases 7 (HDAC7). MSC-EVs were characterized for their ability to cross the blood-brain barrier and modulate the HDAC7/AKAP12/cAMP/PKA/CREB axis, reducing M1 polarization and inflammation. The therapeutic effect of MSC-EV-miR-140-5p was demonstrated in an SAH mouse model, showing reduced neuronal apoptosis and improved neurological function. This study highlights the potential of MSC-EV-miR-140-5p in mitigating SAH-induced neuroinflammation and brain injury, providing a foundation for developing MSC-EV-based treatments for SAH.

13.
Materials (Basel) ; 17(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38591470

RESUMO

Laser cladding is one of the emerging additive manufacturing technologies and has been adopted in various industrial fields. In this study, the morphological characteristics of a single clad of Inconel 718 manufactured by coaxial laser cladding with high laser power from 4200 W to 5400 W, powder feeding rate from 25 g/min to 50 g/min, and cladding speed from 20 mm/s to 50 mm/s are studied. The cross-section of the melt pool is analyzed and classified by type into three types: shallow dilution, flat dilution, and fluctuating dilution. Nine parameters are designed to describe the morphological characteristics of the clad, and the corresponding linear regression models are developed to establish a quantitative relationship between the combined process parameters and morphological characteristics. The results indicate that the total area of the cross-section A, the clad area above the substrate Ac, the area of the molten substrate Am, the total height of the cross-section H, the height of the clad above the substrate hc, the penetration depth hm, the clad width W, the dilution ratio D, and the wetting angle θ are determined by complex coupling of energy input and mass accumulation, and they are proportional to PF0.4/V, P0.5F/V, P/F0.2/V0.4, P2F0.6/V, PF0.7/V, P2/F/V0.3, P/V0.8, P/FV0.2, and PF7/V0.8, respectively. The large linear regression coefficients and the analysis residuals indicate the high reliability of the statistical linear regression models. This work aims to provide a comprehensive understanding of the influence of the main processing parameters on the morphological characteristics of the clad, which is of great value in providing a reference and laying a basis for the practical application of laser cladding technology at a high deposition rate.

14.
Front Immunol ; 15: 1333848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596683

RESUMO

Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.


Assuntos
Fucose , Polissacarídeos , Cloreto de Sódio na Dieta , Camundongos , Animais , Fucose/farmacologia , Inflamação/metabolismo , Dieta
15.
Free Radic Biol Med ; 218: 1-15, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574973

RESUMO

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.

16.
Int J Biol Macromol ; 267(Pt 1): 131436, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593897

RESUMO

Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.

17.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585965

RESUMO

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 is highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression is associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibit neural lineage pathways, suppressing NEPC cell proliferation, PDX tumor organoid viability, and xenograft tumor growth. Mechanistically, the chaperone protein HSP70 regulates PLXND1 protein stability through degradation, and inhibition of HSP70 decreases PLXND1 expression and NEPC organoid growth. In summary, our findings suggest that PLXND1 could be a new therapeutic target and molecular indicator for NEPC.

18.
Int J Biol Macromol ; 267(Pt 2): 131429, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583828

RESUMO

Herein, a novel chitosan Schiff base (CS-FGA) as a sustainable corrosion inhibitor has been successfully synthesized via a simple amidation reaction by using an imidazolium zwitterion and chitosan (CS). The corrosion inhibition property of CS-FGA for mild steel (MS) in a 1.0 M HCl solution was studied by various electrochemical tests and physical characterization methods. The findings indicate that the maximum inhibition efficiency of CS-FGA as a mixed-type inhibitor for MS in 1.0 M HCl solution with 400 mg L-1 reaches 97.6 %, much much higher than the CS and the recently reported chitosan-based inhibitors. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle (WCA) results reveal that the CS-FGA molecules firmly adsorb on the MS surface to form a protective layer. The adsorption of CS-FGA on the MS surface belongs to the Langmuir adsorption isotherm containing both the physisorption and chemisorption. According to the X-ray photoelectron spectroscopy (XPS) and UV-vis spectrum, FeN bonds presented on the MS surface further prove the chemisorption between CS-FGA and Fe to generate the stable protective layer. Additionally, theoretical calculations from quantum chemical calculation (DFT) and molecular simulations (MD) were performed to reveal the inhibition mechanism of CS-FGA.

19.
Medicine (Baltimore) ; 103(16): e37828, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640267

RESUMO

Cerebral palsy (CP) is the most common disabling disease in children, and motor dysfunction is the core symptom of CP. Although relevant risk factors have been found to be closely associated with CP: congenital malformations, multiple gestation, prematurity, intrauterine inflammation and infection, birth asphyxia, thrombophilia, and perinatal stroke. Its important pathophysiological mechanism is amniotic fluid infection and intraamniotic inflammation leading to fetal developing brain damage, which may last for many years. However, the molecular mechanism of CP is still not well explained. This study aimed to use bioinformatics to identify key biomarker-related signaling pathways in CP. The expression profile of children with CP was selected from the Gene Expression Comprehensive Database, and the CP disease gene data set was obtained from GeneCards. A protein-protein interaction network was established and functional enrichment analysis was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. A total of 144 differential key intersection genes and 10 hub genes were identified through molecular biology. Gene Ontology functional enrichment analysis results show that differentially expressed genes are mainly concentrated in biological processes, such as immune response and neurogenesis. The cellular components involved mainly include axons, postsynaptic membranes, etc, and their molecular functions mainly involve proteoglycan binding, collagen binding, etc. Kyoto Encyclopedia of Genes and Genomes analysis shows that the intersection genes are mainly in signaling pathways related to the immune system, inflammatory response, and nervous system, such as Th17 cell differentiation, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, NF-κB signaling pathway, axon guidance, PI3K-Akt signaling pathway, HIF-1 signaling pathway, gap junction, etc. Jak-STAT signaling pathway, mTOR signaling pathway, and related hub genes regulate immune cells and inflammatory factors and play an important role in the development and progression of CP.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Criança , Feminino , Gravidez , Humanos , Paralisia Cerebral/genética , Fosfatidilinositol 3-Quinases , Biomarcadores , Biologia Computacional , Inflamação/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-38642118

RESUMO

Childhood maltreatment has long-term negative effects on individuals' physical and mental well-being, and may increase the risk for suicidal ideation. However, how different patterns of childhood maltreatment affect subsequent suicidal ideation and the underlying mediating mechanisms remain unclear, particularly among Chinese adolescents. This study used latent profile analysis to identify patterns of childhood maltreatment among adolescents and explored how these patterns predicted subsequent suicidal ideation via depression, hope, and expressive suppression. This study used a two-wave, 1-year longitudinal design and included 2156 adolescents (Mage = 13.97 years, SDage = 1.61 years; 49.6% females). We identified three patterns of childhood maltreatment: low maltreatment, high psychological neglect, and high maltreatment. Compared with the low maltreatment group, the high maltreatment group indirectly predicted subsequent suicidal ideation 1 year later via depression through hope and expressive suppression, whereas the direct effect on suicidal ideation was not significant. Compared with the low maltreatment group, the high psychological neglect group had a significant direct effect on subsequent suicidal ideation and indirectly predicted suicidal ideation through depression or hope. Identifying patterns of childhood maltreatment among adolescents will assist mental health workers in developing targeted interventions to effectively alleviate suicidal ideation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...